Menu schließen

Nullstellen einer Funktion rausfinden

Frage: Nullstellen einer Funktion rausfinden
(2 Antworten)


Autor
Beiträge 5
0
Guten Mittag,


ich war nun seit einiger Zeit nicht mehr in der Schule wegen einem Auslandsaufenthalt und wiederhole momentan alles was in dem halebn Jahr, das ich nicht in der schule war gemacht wurde.

Ich bin gerade bei Mathe und habe nun ein Problem bei folgender Aufgabe:

i(x) = x * (x-2) * (2x+6) * (x²+9)

Ich soll von dieser Funktion die Nullstellen rausfinden, aber wie geht das?

Ich habe die Formal vereinfacht, dann kommt das raus:

2x^5 + 2x^4 + 6x^3 + 18x^2 - 108x

Von da aus habe ich dann eine Nullstelle geraten. Das wäre dann 2.

Nun bin ich mit der Polynomdivision weiter gegangen. Also:

(2x^5 + 2x^4 + 6x^3 + 18x^2 - 108x) : (x-2) = 2x^4 + 6x^3 + 18x^2 +54x

War der Schritt schon falsch? Wenn nicht wie mache ich weiter?

MFG
Frage von Leon1309 | am 02.02.2016 - 15:41

online
Autor
Beiträge 40282
2103
Antwort von matata | 02.02.2016 - 15:55
Hier gibt es einen Nullstellenrechner mit Erklärung sämtlicher Rechenschritte


http://www.mathepower.com/nullstellen.php
________________________
 e-Hausaufgaben.de - Team


Autor
Beiträge 2582
492
Antwort von Ratgeber | 02.02.2016 - 17:20
fx) = 0 setzen
  • x 1 :
    x = 0
  • x 2 :
    0 = x-2 | +2
    2 = x
  • x 3 :
    0 = 2x+6) | -6
    -6 = 2x | :2
    -3 = x
  • x 4 :
    0 = x²+9 | -9
    -9 = x 2 | Hat keine Lösung, denn die Wurzel aus negativen Zahlen ist auf den reellen Zahlen nicht definiert.

Verstoß melden
Hast Du eine eigene Frage an unsere Mathematik-Experten?

> Du befindest dich hier: Support-Forum - Mathematik
ÄHNLICHE FRAGEN:
BELIEBTE DOWNLOADS: