Parabel- und Achsenschnittpunkte gesucht
Frage: Parabel- und Achsenschnittpunkte gesucht(23 Antworten)
4b)In welchen Punkt schneidet sich die Achse: y=-4x+3 4c)Wo schneidet sich diese Parabeln? y=-2x+1 y=4x+3 4d)Wie lauten die Koordinaten der Schnittpunkte von y=-4x+3 y= x hoch 2 -2x-8 4e)Berechnen Sie wo sich die gerade trifft: y=-4x+3 y=-3x hoch 2+2x |
GAST stellte diese Frage am 08.12.2008 - 13:35 |
Antwort von GAST | 08.12.2008 - 13:35 |
Ich |
Antwort von GAST | 08.12.2008 - 13:37 |
4b) y=-4x+3+0 da hab ich diese Formel benutzt: y=ab+bx+c da bekam ich dass raus xs= 3/8 ys=0,5625 4c) -2x+1=-4x+3 /+2x 1=-2x+3/-3 -2=-2x//-2 1=x y: -2x1+1 y: -1 Probe: -1=-4*1+3 -1=-1 |
Antwort von GAST | 08.12.2008 - 13:41 |
4d) -4x+3=x hoch 2-2x-8/-3 -4x= x hoch 2 -2x-11/+4x 0=x hoch 2 +2x-11 dann die PQ Formel da bekomme ich dass raus: S1 (2,5/0) S2 ( 4,5/0) 4e) -4x+3=-3x hoch 2 +2x/-3 -4x=-3x hoch +2x-3/+4x 0=-3x hoch 2 +6x -3 / geteilt -3 0=x hoch 2 +2x +1 dann pq Formel S1(-1/0) S2(-1/0) |
Antwort von GAST | 08.12.2008 - 13:47 |
zu 4b): Ein Achse kann sich nicht schneiden. Du kannst die Schnittpunkte der Geraden mit den beiden Koordinatenachsen bestimmten. Den einen kannst du aus der Geradengleichung direkt ablesen, nämlich den Schnittpunkt mit der y-Achse => Sy(0/3) Den Schnittpunkt mit der xAchse erhält man, indem man die Gleichung mit Null gleichsetzt, also 0=-4x+3. Darasu ergubt sich x=3/4. => Sx(0/0,75) Das sind die Schnittpunkte der Geraden mit der Achse. Bei den anderen Aufgaben musst du immer nur gleichsetzen und x bestimmen. Bei 4e) ist mein errechneter Punkt übrigens S(1/-1) |
Antwort von ortagol (ehem. Mitglied) | 08.12.2008 - 13:48 |
seid wann ist eine Funktion eine achse? |
Antwort von GAST | 08.12.2008 - 13:50 |
4e) habe ich so gemacht: -4x+3=-3x hoch 2 +2x/-3 -4x=-3x hoch +2x-3/+4x 0=-3x hoch 2 +6x -3 / geteilt -3 0=x hoch 2 +2x +1 dann pq Formel x1,2= -2/2 +- wurzelzeichen 2/2 hoch 2 - (+1) x1,2= -1 +- wurzelzeichen 1 -1 x1,2= -1 +- 0 x1= -1+0=-1 x2=-1-0=-1 |
Antwort von GAST | 08.12.2008 - 13:52 |
bedenke die allgemeine Form der p-q-Formel: x= -p/2... Da du für p -2 einsetzt wird es positiv sodass du dort 1 +/-... steen hast. Und wenn unter der Wurzel Null rauskommt, dann hast du nur einen Punkt. |
Antwort von GAST | 08.12.2008 - 13:53 |
"0=-3x hoch 2 +6x -3 / geteilt -3 0=x hoch 2 +2x +1" falsch dividiert 6 durch (-3) ergibt nicht 2 |
Antwort von GAST | 08.12.2008 - 13:55 |
4a) die AUfagbe ist: Bestimmem Sie die Gleichung einer zweiten Gerade durch die Parabel P1(2/-5) P2(-2/11) Mein Vorschlag: (y-y1)/(x-x1) = (y2-y1) / (x2-x1) (y-(-5)/(x-(+2)=(11-(-5)/(-2-2) = 16/-4 Wie geht dass weiter? |
Antwort von GAST | 08.12.2008 - 14:01 |
Mal ganz langsam. Du solltest erstmal die Begriffe lernen. P1 und P2 sind keine Parabeln sondern Punkte. Die allgemien Geradengleichung lautet: y=m*x+n m hast du bereits bestimmt, das ist bei dir -4 => y=-4x+n Da setzt du jetzt wie Werte von P1 oder P2 ein und berechnest n. Dann hast du die Gerade bereits. |
Antwort von GAST | 08.12.2008 - 14:02 |
bei e) dann pq Formel x1,2= -2/2 +- wurzelzeichen 2/2 hoch 2 - (+1) x1,2= -1 +- wurzelzeichen 1 -1 x1,2= -1 +- 0 x1= -1 x2=-1 da kommt doch kein 1/-14 raus? |
Antwort von GAST | 08.12.2008 - 14:05 |
ich habe bereits dir deinen fehler gennant, korrigieren ihn und versuche es erneut |
Antwort von GAST | 08.12.2008 - 14:06 |
da kommt doch kein S 1/-1 raus? |
Antwort von GAST | 08.12.2008 - 14:08 |
Du hast bei e) nur x=1 Das musst du jetzt in ein e der beiden Ausgangsgleichungen einsetzen um y zu bestimmen. Wenn du 1 einsetzt kommt für y -1 raus, also ist der Punkt S(1/-1) |
Antwort von GAST | 08.12.2008 - 14:10 |
e) x1,2= --2/2 +- wurzelzeichen 2/2 hoch 2 - (+1) x1,2= 1 +- wurzelzeichen 1 -1 x1,2= 1 +- 0 x1= 1 x2=1 ok jetz habe ich x=1 und wie bekome ich jett diese y-1 raus? |
Antwort von GAST | 08.12.2008 - 14:11 |
setze den ermittelten x-wert in eins der beiden ursprungsgleichungen ein, somit erhältst du den y-wert |
Antwort von GAST | 08.12.2008 - 14:12 |
ok das ahb ch so geamct y=-4*1+3 y=-4+3 y=-1 das muss korrekt sei oder? |
Antwort von GAST | 08.12.2008 - 14:12 |
ja, so sieht es gut aus |
Antwort von GAST | 08.12.2008 - 14:15 |
Die Aufagben b+c+e sind die auch falsch? |
Antwort von GAST | 08.12.2008 - 14:21 |
c, d sind ebenfalls nicht richtig |
Verstoß melden
142 ähnliche Fragen im Forum:
> Du befindest dich hier: Support-Forum - Mathematik- achsenschnittpunkte (5 Antworten)
- Aufstellen von Funktionsgleichung (3 Antworten)
- frage zur Wendestelle und Achsenschnittpunkte (1 Antworten)
- Achsenschnittpunkte / Schnittpunkte ausrechnen (5 Antworten)
- Achsenschnittpunkte? (3 Antworten)
- Wie muss man bei diesen Aufgaben vorgehen? (1 Antworten)
- mehr ...
ÄHNLICHE FRAGEN:
- achsenschnittpunktekönnte mir einer die achsenschnittpunkte ausrechnen oder die formel sagn für folgende gleichung y=3/8x²+6/8x-9/8, thx schonmal ..
- Aufstellen von Funktionsgleichung1. Eine Parabel 3.Ordnung hat dieselben Achsenschnittpunkte wie y=2x-1/2x^3. Beide Parabeln stehen in 0 senkrecht aufeinander..
- frage zur Wendestelle und AchsenschnittpunkteHallo Ist die Wendestelle eine Stelle wo der Graph am stärksten steigt? Sind Achsenschnittpunkte x und y Werte?
- Achsenschnittpunkte / Schnittpunkte ausrechnenhey Leute, könnt ihr mir vllt helfen habe z B f (x)= -1/3x + 12 und g(x) = 3x - 4 und von den beiden jetzt Schnittpunkte und ..
- Achsenschnittpunkte?Ich soll die Achsenschnittpunkte berechnen.. f(x)=x²-6x+11 1. Py(0/11) 2. Scheitelpunkte SP(3/2) Ok.. und die ..
- Wie muss man bei diesen Aufgaben vorgehen?Hallo :) a) Eine Parabel geht durch P1(0/44),P2(1/0) und P3(2/18). Bestimmen Sie die Gleichung dieser Parabel. oder b) ..
- mehr ...
BELIEBTE DOWNLOADS:
- Funktionen: Logarithmus- ,Exponential- ,Wurzel- und PotenzfunktionVorbereitung für 10. Klasse Prüfung Gymnasium in Mathematik Jeweils mit Skizze und genauer Beschreibung der Verschiebungen auf ..
- Mathematik Klausur I des ersten Semesters in der OberstufeDie Klausur dreht sich um die Begriffe Polynomdivision und Grenzwertverhalten, behandelt jedoch auch fast alle wichtigen Themen ..
- Evoluten und Evolventen in der heutigen technischen MechanikEvoluten und Evolventen spielen in der heutigen technischen Mechanik eine wichtige Rolle, wobei letzteres, die Evolvente (nach..
- mehr ...