Menu schließen

Ableitungen warum fällt das a^2 bei dieser ableitung weg

Frage: Ableitungen warum fällt das a^2 bei dieser ableitung weg
(6 Antworten)

 
fa(x)=(x^2-a^2)/(x^2)


fa´(x)=(2x*x^2-((x^2-a^2)*2x))/((x^2)^2)

also zusammengefasst fa´(x)=2a^2/x^3

wie gesagt ich verstehe nicht warum u` = 2x ist und nicht 2x-2a

u=(x^2-a^2), warum dann nicht auch u`= 2x-2a

hoffe jemand versteht was ich meine und wenn ja fällt dieses a^2 bzw. a^? immer weg oder nur in diesem fall.
GAST stellte diese Frage am 20.10.2011 - 18:35


Autor
Beiträge 2737
102
Antwort von v_love | 20.10.2011 - 18:36
angenommen u(x)=x²-a²,
dann ist u`(x)=(x²)`-(a²)`=2x-0=2x, denn a² hängt nicht von x ab.

 
Antwort von GAST | 20.10.2011 - 18:44
ja, aber warum ist a^2 0, warum kann ich a^2 nicht einfach ableiten also 2a drauß machen bzw warum ist die ableitung von a^2 0 und nicht 2a, die ableitung von x^2 ist ja auch 2x.
oder gibt es irgendeine regel die ich nicht kenne durch die ich a^2 einfach als eine normale zahl betrachten muss wie 10 z.b. und durch die ich es einfach als 0 ableiten darf oder anders verschwindet bei der ableitung alles was kein x hat?


Autor
Beiträge 2737
102
Antwort von v_love | 20.10.2011 - 18:48
a² ist nicht 0, aussagen der form "ableitung von a² ist 0" sind auch nicht wirklich richtig.

es kommt immer drauf an, was deine veränderliche ist.
wenn du z.b. den graphen von f(x)=a² aufträgst, dann siehst du eine gerade mit y-achsenabschnitt a² mit steigung 0, also ist auch die ableitung überall 0.
f(a)=a² ist dagegen eine parabel (bzw. der graph davon)

in dem ersten fall ist a fest (aber beliebig) gewählt, z.b. 10 um bei deinem beispiel zu bleiben.
im zweiten ist a veränderlich.

 
Antwort von GAST | 20.10.2011 - 18:58
gut wenn es heißt f(a)=a² macht es keinen unterschied weil es ja auch heißen könnte f(x)=x²
aber wenn es heißt f(x)=a² macht es einen unterschied, dass x bzw. der buchstabe in der klammer von f(x) bzw. f(beliebiger buchstabe)bezieht sich immer nur auf diesen buchstaben und alle anderen buchstaben werden einfach mit 0 abgeleitet


Autor
Beiträge 2737
102
Antwort von v_love | 20.10.2011 - 19:03
naja, so pauschal sollte man das nicht sagen.

besser wäre: alle anderen variablen werden als konstanten betrachtet (z.b. 10)
wenn du z.b. g(x)=a²*x hast ist die ableitung nicht 0!

 
Antwort von GAST | 20.10.2011 - 19:21
g(x)=a²*x gut, dass ist klar dann ist g´(x) = a^2, weil ich ja^a^2 gar nicht ableiten muss/darf

wenn g(x)=a²+x wäre, wäre aber a^2 0 und somit wäre g´(x)=1

gut zumindest habe ich es verstanden, herzlichen dank, dass hilft mir sehr.

ps mathe wird so langsam wieder, immer logischer.

Verstoß melden
Hast Du eine eigene Frage an unsere Mathematik-Experten?

> Du befindest dich hier: Support-Forum - Mathematik
ÄHNLICHE FRAGEN:
  • Funktion & Ableitung
    Hey, ich verstehe nicht ganz was die Ableitungen der funktion oder eienr funktion angeben. wenn jetzt f(x) die funktion ist ..
  • ableitungen
    Hallo:) ich versuch mich gerade an paar ableitungs-übungen und hab folgendes problem: es sollen die ersten dre ableitungen von..
  • Ableitungen: Die ersten 3 Ableitungen einer Funktion gesucht
    Hey, ich muss die ersten drei Ableitungen dieser Funktion bilden... f(x)=4e^x/(e^x+1)^2 Sind die ersten beiden ..
  • Ableitungen
    Hey, wäre nett, wenn ihr mir weiterhelfen könntet, bei den Ableitungen! :) h(f)=3/f+2af^-3 was ist hier die Ableitung von ..
  • Ableitungen
    Hey Leute =) Ich hab da ein Problem mit einer Ableitung ^^ Hoffe ihr könnt mir helfen =) f(x)=6/(1+9*e^(-0.3828*x)) ..
  • Produktregel Hilfe bei den Ableitungen
    Kurze Frage: Nachdem man die Produktregel angewendet hat und dann die erste Ableitung ermittelt hat und nun die zweite Ableitung..
  • mehr ...
BELIEBTE DOWNLOADS: