Menu schließen

Differentialrechnung und Ableitungen

Beliebte Dokumente zu Differentialrechnung und Ableitungen

Zum Thema Differentialrechnung und Ableitungen:

  • 9 Schul-Dokumente
  • 1 Forumsbeiträge

9 Dokumente zum Thema Differentialrechnung und Ableitungen:

Matheklausur 12. Klasse Fachoberschule (Berlin) Themen: Analysis, Nullstellen, Extrema
Die Datei beinhaltet meine Klausur, die ich im Mathematikleistungskurs geschrieben habe. Die Aufgaben sind aus keinem Schulbuch, sondern von unserem Lehrer erstellt. Es sind vier Aufgaben zu finden zum Thema: Differenzialrechnung (235 Wörter)
Referat über die Grundlagen der Analysis mit sehr vielen Abbildungen über: Definitionsbereich, Wertemenge, Stetigkeit, Steigung und Ableitungsregeln. (876 Wörter)
Eine Funktion ist gegeben. Hoch- und Tiefpunkt, Wendepunkt und Nullstellen sollen bestimmt werden, die Gleichung der Normalen soll angegeben werden. Muster-Rechnung (379 Wörter)
Hier ist alles über die Differentialrechnung. - Sekante, Tangente, Sekanten- und Tangentensteigung - Ableitung der Potenzfunktion, Ableitung der wichtigsten Funktionen - Ableitung von zusammengesetzten Funktionen
Evoluten und Evolventen spielen in der heutigen technischen Mechanik eine wichtige Rolle, wobei letzteres, die Evolvente (nach [VII.1]: [9], S.1f.) ihre bedeutendste Anwendung in der Verzahnungsgeometrie findet. In Zahnradgetrieben stellt die Evolvente die Form einer Zahnradflanke dar. Die Evolventenverzahnung ist somit die Grundlage für Zahnräder, die wiederum als Elemente für Drehbewegungen in verschiedenen Maschinen vorkommen. 1762 schlug der schweizerische Mathematiker Leonhard Euler (siehe [VII.1]: [9], S. 32) die Kreisevolvente als Profilform für Zahnflanken vor, es vergingen jedoch etwa 100 Jahre bis diese Verzahnungsart der Kreisevolvente technisch einsetzbar wurde. Doch die Geschichte der Evolute und der Evolvente begann (vgl. [VII.1]: [6], S. 68) bereits vor ungefähr 350 Jahren, als der niederländische Mathematiker, Physiker und Astronom Christiaan Huygens2 1673 zum ersten Mal die Begriffe Evolute und Evolvente eingeführt und die Evolute als Hüllkurve gekennzeichnet hat. Ziel meiner Facharbeit ist es die Mathematik, um genauer zu sein die Differentialgeometrie, mit der sich Huygens beschäftigt hat, darzustellen. Dennoch werde ich mich bemühen, nicht nur die geometrischen Daten für das Verständnis zu erläutern, sondern auch versuchen, die Vorstellungskraft mit anschaulichen Skizzen und Funktionsgraphen zu stärken. Zur Einführung möchte ich die wichtigsten Bezeichnungen möglichst mathematisch definieren, um diese Hilfsmittel später in der Herleitung der Evolute aus expliziter und Parameterform der Ausgangsfunktionen zu benutzen, welches der Schwerpunkt dieser schriftlichen Arbeit sein soll. Die Evolvente wird dabei nur in Zusammenhang erläutert, weil sie im Maschinenbau eine größere Bedeutung hat. (Power Point, 24 Folien, ) II Einleitung II.1 Vorwort III Grundbegriffe der Differentialgeometrie III.1 Parameterdarstellung III.2 Differentialoperator III.3 Krümmungswerte III.3.1 Krümmung einer ebenen Kurve III.3.2 Krümmungsradius III.3.3 Krümmungskreis IV Themenerläuterung IV.1 Evolute IV.1.1 Definition IV.1.2 Herleitung IV.1.3 Bestimmung der Evolute der Normalparabel IV.1.4 Bestimmung der Evolute einer Ellipse IV.2 Evolvente IV.2.1 Definition IV.2.2 Kreisevolvente IV.2.3 Evolute der Kreisevolvente V Schluss V.1 Zusammenfassung V.2 Reflexion VI Anhang VI.1 Hüllkurve VI.2 Rechnung 1 VI.3 Evolventenverzahnung VI.4 Rechnung 2 VI.5 Rechnung 3 VI.6 Internetquellen VI.6.1 Euler, Leonhard VI.6.2 Huygens, Christiaan VI.6.3 Neil, William VI.6.4 von Samos, Pythagoras VII Quellennachweis VII.1 Literatur VII.2 zusätzliche Literaturhinweise VII.3 Abbildungen VII.4 Internet VII.5 Hilfsmittel (4748 Wörter)
Test über die math. Bereiche, die man in der Sekundarstufe II gelernt hat bzw. gelern haben sollte, die im Mathe-Vorkurs wiederholt wurden. Themen: Mengenlehre, Vollständige Induktion, Grenzwerte von Folgen, Analytische Geometrie, lineare Gleichungssysteme, Differentialrechnung, Integralrechnung, Statistik, Wahrscheinlichkeitsrechnung. (549 Wörter)
Aufgabenstellung: Untersuchen sie die Funktion: f(x)=(4·x - 1)·e^(-x) auf Schnittpunkte mit den Achsen, Extrem- und Wendestellen und zeichnen sie den Graphen. (Alles mit dem Programm Derive) (280 Wörter)
Evoluten und Evolventen spielen in der heutigen technischen Mechanik eine wichtige Rolle, wobei letzteres, die bedeutendste Anwendung in der Verzahnungsgeometrie findet. In Zahnradgetrieben stellt die Evolvente die Form einer Zahnradflanke dar. Die Evolventenverzahnung ist somit die Grundlage für Zahnräder, die wiederum als Elemente für Drehbewegungen in verschiedenen Maschinen vorkommen. 1762 schlug der schweizerische Mathematiker Leonhard Euler die Kreisevolvente als Profilform für Zahnflanken vor, es vergingen jedoch etwa 100 Jahre bis diese Verzahnungsart der Kreisevolvente technisch einsetzbar wurde. Doch die Geschichte der Evolute und der Evolvente begann bereits vor ungefähr 350 Jahren, als der niederländische Mathematiker, Physiker und Astronom Christiaan Huygens 1673 zum ersten Mal die Begriffe Evolute und Evolvente eingeführt und die Evolute als Hüllkurve gekennzeichnet hat. In diesem Referat wird die Parameterdarstellung ausführlich erklärt. Dabei wird auf die Bedeutung der Differentialoperatoren und Krümmungswerte sowie auf die Herleitung der Evolute eingegangen. An Hand einer Beispielrechnung werde die Astroide hergeleitet. Gliederung: - Begriffserläuterung - Parameterdarstellung - Differentialoperatoren - Krümmungswerte - Themenerläuterung - Definition - Herleitung - Schluss - Zusammenfassung - Beispielrechnung (Powerpoint Präsentation, 22 Folien) (392 Wörter)


1 Forumsbeiträge zum Thema Differentialrechnung und Ableitungen:

ich bin grad en bisschen verwirrt.. wenn ich 2 ableitungen gleichsetze um einen schnittpunkt rauszubekommen, so habe ich dann ja x und wo muss ich den x- wert dann einsezten? in die funktionsgleichung, nicht in die ableitungsfunktion oder?
Kostenlos eine Frage an unsere Mathematik-Experten stellen:


Alle Kategorie: Hausaufgaben | Referate | Facharbeiten | Klausuren | Übersicht

Klicke einfach auf ein Fach oder benutze am besten die Suchfunktion, um passende Dateien zu finden.
Wenn du nichts findest oder ein Fach vermisst, kannst du im Forum nach Hilfe suchen.