Menu schließen

Extremwertproblem: Rotierendes Dreieck /Doppelkegel

Frage: Extremwertproblem: Rotierendes Dreieck /Doppelkegel
(8 Antworten)


Autor
Beiträge 0
13
hallo =)

wir hatten heute in meinem Mathekurs ein kleines Problemchen..
Die Aufgabe lautete:

"Welches rechtwinklige Dreieck mit der Hypotenuse 6 cm erzeugt bei Rotation um die Hypothenuse den Rotationskörper größten Volumens?"

Unser Ansatz war eben, dass wir das Volumen eines Doppelzylinders berechnen sollen, etc.

Gerechnet haben wir, alles schön und gut..
zum Schluss kamen wir auf

V(r)=2*pi*r^2,

was auch richtig ist (Lösungsbuch :P)
Die Ableitung davon ist ja dann

V`(r)=4*pi*r

dann muss man ja

V`(r)=0 setzen, aber das ergibt 0, also keine Extremstelle und daher keine Lösung... im Lösungsbuch stand r=3, aber leider kein Lösungsweg...
das ist unser Problem gewesen.. jemand einen Lösungsvorschlag?
Frage von 0nlyThe0ne (ehem. Mitglied) | am 30.11.2010 - 23:13


Autor
Beiträge 0
13
Antwort von Dominik04 (ehem. Mitglied) | 30.11.2010 - 23:21
Zitat:
V(r)=2*pi*r^2

kann nicht richtig sein,
das müsstest du schon sehen, wenn du die Einheiten betrachtest.

wenn ein dreeick um die hypothenuse rotiert, entsteht kein zylinder, sondern ein doppel-kegel.


Autor
Beiträge 0
13
Antwort von 0nlyThe0ne (ehem. Mitglied) | 30.11.2010 - 23:24
ach das meint ich doch :D
die dinger sehen sich sowieso ähnlich.. nene das ist schon richtig mit dem 2*pi*r^2... steht ja auch so im buch und das war auch mein erstes ergebnis ! :)


Autor
Beiträge 0
13
Antwort von Blake (ehem. Mitglied) | 30.11.2010 - 23:28
Guck dir diesen Link an, die letzte Antwort. Eine Alternative zu deiner "Lösung".

http://matheraum.de/forum/Komplexe_Extremwertprobleme/t111747


Autor
Beiträge 0
13
Antwort von Dominik04 (ehem. Mitglied) | 30.11.2010 - 23:30
2*pi*r² wird im Leben kein Volumen geben.
bei r in cm, ergibt sich hier ein wert in cm², und das ist eine fläche ;)

kegelvolumen:
http://de.wikipedia.org/wiki/Kegel_%28Geometrie%29#Volumen

wobei h hier ein teil deiner hypothenuse ist.


Autor
Beiträge 0
13
Antwort von 0nlyThe0ne (ehem. Mitglied) | 30.11.2010 - 23:30
ich schreibs am besten mal ausführlich hin..

V1(r;h1)=1/3*pi*r^2*h1
V2(r;h1)=1/3*pi*r^2*(6-h1)
V2(r;h1)=2*pi*r^2-1/3*pi*r^2*h1

V=V1+V2

V(r,h)=1/3*pi*r^2*h+2*pi*r^2-1/3*pi*r^2*h
V(r)=2*pi*r^2


Autor
Beiträge 0
13
Antwort von Dominik04 (ehem. Mitglied) | 30.11.2010 - 23:39
okay, ich sehe, dass die fehlende einheit [cm] hier nun in der 2 steckt.
ich denke mal fix drüber nach... :P


Autor
Beiträge 0
13
Antwort von 0nlyThe0ne (ehem. Mitglied) | 30.11.2010 - 23:51
vielen lieben Dank! :)


Autor
Beiträge 0
13
Antwort von Dominik04 (ehem. Mitglied) | 30.11.2010 - 23:59
der Link von Blake sollte dir weiterhelfen. (letzter Beitrag, recht weit am Ende)

Denn das Rotationvolumen wird (logischerweise) maximal wenn die Fläche, die rotiert, maximal ist.
Das heißt, du musst eigentlich nur die Dreiecksfläche maximieren. Das sollte einfach sein. (Lösung: gleichschenkliges Dreieck).

Verstoß melden
Hast Du eine eigene Frage an unsere Mathematik-Experten?

214 ähnliche Fragen im Forum: 1 passende Dokumente zum Thema:
> Du befindest dich hier: Support-Forum - Mathematik
ÄHNLICHE FRAGEN:
  • Rotierendes Dreieck: Welche Rotationskörper entstehen ?
    Ich kann mit einfach nicht helfen -,- Anscheinend bin ich echt zu doof für Mathe! Hätte hier mal ne AUfgabe bei der ich Hilfe ..
  • Dreieck im Dreieck
    Dreieck im Dreieck berechnen , wie berechne ich das ? im inneren eines Dreiecks ABC liegen die Punkte E,F und G so, dass gilt..
  • Dreieck mit p und q
    Gegeben ist ein Dreieck mit den Seitenlängen a=27.71 b=25.12 c=30.23 und p+q=c. Gesucht ist höhe p und q. Hinweis es ist ein ..
  • Dreieck:Basiswinkel gesucht / Begründung für Dreieck a=b=c
    Die beiden Tangenten an den Graphen in den Wendepunkten (Wendetangenten) schließen zusammen mit der x-Achse ein Dreieck ein. ..
  • Zahlensymbole
    Hallo Leute! Kann mir jemand sagen wo (am liebsten im internet) man Aufgaben mit Zahlensymbolen finden kann? Also die ..
  • Mengen
    Hallo alle zusammen ich brauche hilfe bei einer Aufgabe. Die symetrische Differenz zweier Teilmengen A, B einer Menge M ist ..
  • mehr ...
BELIEBTE DOWNLOADS: