Menu schließen

Gleichungen lösen.

Frage: Gleichungen lösen.
(7 Antworten)


Autor
Beiträge 0
13
Hallo,

ich schreibe am Freitag sehr wichtige Vorprüfungen und bin seit Tagen dabei, sehr viel wiederholen zu müssen.
Jetzt bin ich beim Thema Gleichungen angelangt und kann mich an nichts mehr erinnern :( Kann mir vielleicht jemand erklären, wie ich Gleichungen lösen kann? Worauf muss ich achten? Ich kann hier mal eine Gleichung hinschreiben, die in meinem Reader steht und würde mich sehr freuen, wenn jemand von euch diese Aufgabe lösen könnte und bei jedem Schritt des Lösungsweg vermerken könnte, warum und wieso das so ist :)
( der / soll ein Burch - Strich sein ) -> 1/x+1 = 2/x+4

Was wollen die da von mir? Was muss ich machen? Kann die jemand lösen, damit ich an Hand diesem Lösungsweg die nächsten Aufgaben berechnen kann?

LG
Frage von Kaddy3 (ehem. Mitglied) | am 23.02.2010 - 11:24


Autor
Beiträge 613
6
Antwort von Franky1971 | 23.02.2010 - 11:37
(1/x)+1 = (2/x)+4

... hier ist wohl das x gesucht,
bei der die Gleichung "wahr" ist, also musst Du die Gleichung nach x auflösen:

(1/x)+1 = (2/x)+4 |(* x)
1+1x = 2+4x
x - 4x = 2 - 1
-3x = 1
x = -1/3

kannst die Probe machen (für x = -1/3):
(-3)+1 = (-6)+4
-2 = -2 --> "wahr"

 
Antwort von GAST | 23.02.2010 - 11:38
1/x+1 = 2/x+4 die gleichung *(x+4)und *(x+1)
x+4= 2(x+1)
x+4= 2x+2 nach x auflösen


Autor
Beiträge 613
6
Antwort von Franky1971 | 23.02.2010 - 11:41
oh sorry, hab wohl eine kleine Bemerkung von Dir überlesen:
Zitat:
der / soll ein Bruch - Strich sein


also so (warum setzt Du nicht gleich die Klammern richtig?):
1/(x+1) = 2/(x+4)


Autor
Beiträge 0
13
Antwort von Kaddy3 (ehem. Mitglied) | 23.02.2010 - 11:48
Hallo,

ich verstehe das irgendwie nicht :( Bei Franky`s Weg komme ich bis zum zweiten Schritt mit. Was Du danach gerechnet hast, ist vor mich nicht nachvollziehbar. Könntest Du das bitte einmal erklären? Wie kommst du darauf? -> 1+1x = 2+4x ( bis hier hin verstehe ich es )
x - 4x = 2 - 1 ( <- was hast du hier gemacht? )
-3x = 1 ( <- und hier? )
x = -1/3 ( <- wie bist du auf dieses Endergebnis gekommen?

Und: in der Aufgabe stehen keine Klammern. Wie soll ich da irgendwelche Klammern richtig setzen können? * Verwirt ist *

Danke, dass ihr euch mit der Frage beschäftigt. :)

LG


Autor
Beiträge 0
13
Antwort von Colm16 (ehem. Mitglied) | 23.02.2010 - 12:36
Hi,
steht bei deiner Aufgabe x+1 bzw. x+4 zusammen unter dem Bruchstrich oder nur das x?

Wenn nur das x unter dem Bruchstrich steht, geht die Lösung so:
(1/x)+1 = (2/x)+4;
1+1x = 2+4x; Jetzt musst du die x auf eine Seite bringen und die Faktorene ohne x auf die andere Seite. D.h. du ziehst auf beiden Seiten 4x und 1 ab:
1+1x -1-4x = 2+4x -1-4x; dann bekommst du
1x-4x = 2-1; Jetzt einfach ausrechenen:
-3x = 1; Nun auf beiden Seiten durch -3 dividieren:
-3x/-3 =1/-3; auf der linken Seite kannst du jetzt die -3 kürzen und es bleibt x alleine übrig, rechts kannst du das minus vor den Bruch ziehen:
x=-1/3


Autor
Beiträge 613
6
Antwort von Franky1971 | 23.02.2010 - 12:39
zur Klammersetzung:
es gilt - wenn keine Klammern gesetzt sind - Punkt (* und :) vor Strichrechnung (+ und -)
Deine Gleichung
Zitat:
1/x+1 = 2/x+4
wäre dann (1/x)+1 = (2/x)+4 und nicht das 1/(x+1) = 2/(x+4)

meine Rechnung stimmt somit nur für diesen Fall (1/x)+1 = (2/x)+4

auch wenn mein Lösungsweg nicht für Deinen Fall war - hier die Erklärung:
1+1x = 2+4x (mit dem kommst Du noch klar)
1+1x = 2+4x | (-1) und (-4x)
1+1x-1-4x = 2+4x-1-4x (Operationen auf beiden Seiten der Gleichung durchführen!)
1x-4x = 2-1 (somit landest Du hier)
1x-4x = -3x !
-3x = 1 |:(-3)
-3x/(-3) = 1/(-3) und durch entsprechendes kürzen:
x = 1/(-3) der Rest ist kosmetisch:
x = -1/3


Autor
Beiträge 613
6
Antwort von Franky1971 | 23.02.2010 - 13:00
... das Ziel bei Gleichungen dieser Art ist stets, dass deine Unbekannte (in diesem Fall x) auf einer Seite (in der Regel immer links des Gleichheitszeichen) steht - und zwar ohne Faktoren und Konstanten.

Der Rechenweg für diesen Fall: 1/(x+1) = 2/(x+4)

1/(x+1) = 2/(x+4) |*(x+1) und *(x+4) immer auf beiden Seiten!
[(x+1)(x+4)]/(x+1) = [2(x+1)(x+4)]/(x+4) | kürzen!
(x+4) = 2(x+1)
x+4 = 2x+2 |-2x und -4
x+4-2x-4 = 2x+2-2x-4 | sortiert ergibt das:
x-2x+4-4 = 2x-2x+2-4
-1x = -2 | *(-1) oder /(-1)
-1x*(-1) = (-2)*(-1) | (-1)*(-1)= (+1) also
x = 2

mach dir Probe und setze in die Gleichung für x die 2 ein:

1/(x+1) = 2/(x+4)
1/(2+1) = 2/(2+4)
1/3 = 2/6
1/3 = 1/3 --> "wahr"

Verstoß melden
Hast Du eine eigene Frage an unsere Mathematik-Experten?

> Du befindest dich hier: Support-Forum - Mathematik
ÄHNLICHE FRAGEN:
BELIEBTE DOWNLOADS: