Wendepunkte und Sattelpunkte für Ableitungsfunktionen
Frage: Wendepunkte und Sattelpunkte für Ableitungsfunktionen(6 Antworten)
Wenn ich einen Graphen für eine normale Funktion (zb. was sind da die notwendigen Bedingungen für einen Sattelpunkt und Wendepunkt ? Sind das imme rnoch die gleichen? Ich komm da so durcheinander , wäre nett, wenn mir das jemand erklären könnte. |
Frage von rani47 (ehem. Mitglied) | am 09.03.2011 - 12:50 |
Antwort von GAST | 09.03.2011 - 12:53 |
ist natürlich immer das gleiche, kannst g:=f` definieren, und dann muss für einen wendepunkt z.b. (wenn du den wendpunkt von f suchst, muss natürlich g`(x0)=0 sein) |
Antwort von rani47 (ehem. Mitglied) | 09.03.2011 - 13:05 |
zb bei dieser Funktion f`(x) = 4x^3-8x Ich habe die Nullstellen ermittelt das waren : x1: 0 x2:1,41 x3:-1,41 dann habe ich die 2 ableitung gebildet und davon die Nullstellen berechnet : x1 =0,82 x2=-0,82 dann habe ich die 3 ableitung gebildet um die nullstellen von der ableitung 2 einzusetzen und zu ermitteln, ob das ein Hoch, tief oder sattelpunkt ist. Ich habe einen Tiefpunkt einen Hochpunkt und (0/0) raus , wo ich dann nicht wusste, ob das ein Sattelpunkt oder wendepunkt ist. Ich habe auch die ableitungsfunktion bei Geogebra eingegeben so wie ich die Nullstellen ermittelt habe ist alles richtig außer dieser 0/0 |
Antwort von GAST | 09.03.2011 - 13:09 |
die zweite ableitung von f ist bei x=0 ungleich 0, also sollte es ein lok. extremum von f sein. |
Antwort von rani47 (ehem. Mitglied) | 09.03.2011 - 13:10 |
ein lokales extremum ist doch ein Hochpunkt, aber wenn ich die Funktion in diesem Programm geogebra eingebe kommt da kein Hochpunkt sondern eher eine Gerade die durch 0 geht |
Antwort von GAST | 09.03.2011 - 13:12 |
ein lok. extremum ist nicht unbedingt ein hochpunkt. keine ahnung, was du da machst ... |
Antwort von rani47 (ehem. Mitglied) | 09.03.2011 - 13:20 |
okay ich glaube genau da liegt mein problem. Ich weiß nicht genau, was ein lok. extremum ist :/ |
84 ähnliche Fragen im Forum:
> Du befindest dich hier: Support-Forum - Mathematik- Wendepunkte: Begründung für 3 vorhandene Wendepunkte? (19 Antworten)
- Wendepunkte einer Funktion 4ten Grades (2 Antworten)
- Wendepunkte (2 Antworten)
- Extremwerte, Wendepunkte (36 Antworten)
- Hoch - und Tief- bzw. Sattelpunkte bestimmen (8 Antworten)
- Extrem -und Wendepunkte einer Funktion (5 Antworten)
- mehr ...
ÄHNLICHE FRAGEN:
- Wendepunkte: Begründung für 3 vorhandene Wendepunkte?Wie kann man ohne weitere Rechnung begründen, dass die Funktion f(x)=2x*e^-4x² (die punktsymmetrisch ist) 3 Wendepunkte besitzt..
- Wendepunkte einer Funktion 4ten GradesWenn ich eine Funktion 4ten Grades habe. Habe ich dann automatisch 2 Wendepunkte, oder kann sie auch weniger Wendepunkte haben..
- WendepunkteWie berechnet man die Wendepunkte einer Funktion z.B. von x^3-2x^2-4x+8 ?
- Extremwerte, WendepunkteHallo, an alle die helfen wollen. Ich muß im Rahmen einer Kurvendiskussion die Extremwerte und Wendepunkte der Funktion f(x) = ..
- Hoch - und Tief- bzw. Sattelpunkte bestimmenHi , verstehe nicht wie ich bei den Aufgaben vorgehen muss .. f(x)=x³-3x f(x)= 1/4x^4 - 2/3x^3 - 3/2x^2 Kann mir jemand..
- Extrem -und Wendepunkte einer Funktionhuhu :) es geht um folgende Funktion: fk(x)= 4x-kx² ich habe schon die ableitungen gebildet: fk`(x)= 4-2kx und fk``(x..
- mehr ...