Menu schließen

für schlaue stochastikfans

Frage: für schlaue stochastikfans
(6 Antworten)

 
ich glaube die lösungen kann man mit einer tabelle ablesen aber ich kann mit der tabelle irgendwie nich umgehen aber weiss ich nich genau. freu mich über hilfe..



aufgabe1: Ein blumenhändler gibt für seine blumenzwiebeln eine 90%-Keimgarantie. jemand kauft eine packung mit 10[20;50] zwiebeln. mit welcher wahrscheinlichkeit keimen
a) alle zwiebeln
b) genau 90% der gekauften zwiebeln
c) mehr als 90% der gekauften zwiebeln

aufgabe2: bei meinungsbefragungen werden erfahrungsgemäß nur ca. 80% der ausgesuchten personen angetroffen. mit welcher wahrscheinlichkeit werden von
a) 50 ausgesuchten personen mehr als 35 angetrofen
b) 100 ausgesuchten personen weniger als 75 angetreoffen?

aufgabe:3 in der kantine einer firma nehmen erfahrungsgemäß durchschnittlich 60 oder 100 angestellten ihr mittagessen ein. mit welcher wahrscheinlichkeit werden
a) mehr als 60
b) weniger als 60
c) weniger als 70
d) mindestens 70
e) genau 70 personen in der katine essen?
GAST stellte diese Frage am 09.03.2006 - 21:03

 
Antwort von GAST | 09.03.2006 - 21:07
boa hab ich lange weile?


hmm...
scheiße ich hab lange weile! hmmm

Seh ich so aus als hätt ich bock auf stochastik in meiner freizeit!?!^^

 
Antwort von GAST | 09.03.2006 - 21:10
zu aufgabe 3
A-ziemlich wahrscheinlich
B-ne glaub nicht
C-das muss drin sein
D-bestimmt
E-unmöglich.
keine garantie auf diese angaben war es das was du wissen wolltest ?*;)

 
Antwort von GAST | 09.03.2006 - 21:11
die frage mit den zwiebeln kenn ich.. die steht auch in meinem mathebuch ;) ... vllt hab ich noch irgendwo die lösung... *malsuch*

 
Antwort von GAST | 09.03.2006 - 21:13
jeah minni aus hh finde die lösungen ;-))
ne ich brauch konkrete zahlen@junge mit der mütze

 
Antwort von GAST | 12.03.2006 - 20:12
also...

das sieht mir nach ner bernoulli wahrscheinlichkeit aus... also muss man sich überlegen, dass man n=10 [20;50] hat.. p=0,9 ... (q=0,1) ...
a) wäre dann 10 von 10 keimen... dann guckt man nach in der Tabelle und stellt fest, dass man die Gegenwahrscheinlichkeit benutzen muss, weil man sonst kein wert findet in der tabelle... also 100% - 34,9% =65,1% ....

kann man auch mit der Bernoulliformel ausrechnen....

aber ganz sicher bin ich mir da nicht... hab meine Unterlagen nicht gefunden und Gegenwahrscheinlichkeiten konnte ich noch nie wirklich gut

gruß chris

 
Antwort von GAST | 12.03.2006 - 20:15
Minni hat recht stimmt hatten die aufgabe die gleiche (1) montag in mathe^^

liebe grüße

Verstoß melden
Hast Du eine eigene Frage an unsere Mathematik-Experten?

> Du befindest dich hier: Support-Forum - Mathematik